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Summary

1. Changes in phenology are an inevitable result of climate change, and will have wide-reaching impacts on

species, ecosystems, human society and even feedback onto climate. Accurate understanding of phenology is

important to adapt to andmitigate such changes. However, analysis of phenology globally has been constrained

by lack of data, dependence on geographically limited, non-circular indicators and lack of power in statistical

analyses.

2. To address these challenges, especially for the study of tropical phenology, we developed a flexible and robust

analytical approach – using Fourier analysis with confidence intervals – to objectively and quantitatively describe
long-term observational phenology data even when data may be noisy. We then tested the power of this

approach to detect regular cycles under different scenarios of data noise and length using both simulated and field

data.

3. We use Fourier analysis to quantify flowering phenology from newly available data for 856 individual plants

of 70 species observed monthly since 1986 at Lop�e National Park, Gabon. After applying a confidence test, we

find that 59% of the individuals have regular flowering cycles, and 88% species flower annually. We find time-

series length to be a significant predictor of the likelihood of confidently detecting a regular cycle from the data.

Using simulated data we find that cycle regularity has a greater impact on detecting phenology than event

detectability. Power analysis of the Lop�e field data shows that at least 6 years of data are needed for confident

detection of the least noisy species, but this varies and is often>20 years for themost noisy species.

4. There are now a number of large phenology datasets from the tropics, from which insights into current regio-

nal and global changes may be gained, if flexible and quantitative analytical approaches are used. However, con-

sistent long-term data collection is costly and requires much effort. We provide support for the importance of

such research and give suggestions as to how to avoid erroneous interpretation of shorter length datasets and

maximise returns from long-termobservational studies.

Key-words: circular analysis, climate change, flowering, Gabon, Lop�e National Park, pheno-

phases, spectral analysis, time-series data, tropical forests

Introduction

Phenology concerns the timing of recurring life cycle events –
such as leaf growth, flowering and fruiting in plants – and has

long fascinated ecologists and evolutionary scientists. Ques-

tions range from understanding the complex environmental

cues and internal mechanisms that initiate phenology events

(phenophases) to the adaptive significance of their timing and

duration and responses to environmental change. Phenology

has wide-reaching influence within ecosystems and determines

the nature of many interspecific interactions (Butt et al. 2015).

Changes in global climate will inevitably have long-term

impacts on phenology (Parmesan 2006) with knock-on effects

for ecosystems and people (van Vliet 2010). It is also clear that

there will be feedbacks between changing phenology and

climate, but they are poorly characterised by current climate

models (IPCC 2014).

TROPICAL PHENOLOGY OVERLOOKED IN REVIEWS OF

CHANGE

Major reviews of phenological change to date have lent heav-

ily on evidence from temperate, especially Northern hemi-

sphere, regions (Parmesan 2006; Cleland et al. 2007;

Chambers et al. 2013). In these regions more phenology data

is available and analyses are arguably simpler. The strong sea-

sonality in temperate regions accompanied by a dormant win-

ter season results in broad synchronisation of phenology on

the annual cycle. Years can be treated to some extent as inde-

pendent repeating events and researchers are able to make use*Correspondence author. E-mail: e.r.bush@stir.ac.uk
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of a relatively simple suite of ‘spring indicators’ (e.g. first

appearance, first lay-date, bud-burst measured in days since 1

January).

While tropical climates are often seasonal, annual variation

is more limited than in temperate regions and vegetative

growth and reproduction are possible at any time of the year

resulting in more diverse phenology and cycles other than

twelve months (van Schaik, Terborgh &Wright 1993). Use of

simple spring indicators is not appropriate for tropical phenol-

ogy because of the circularity of the data (e.g. 1 January is an

arbitrarily low value and not meaningfully different from 31

December).

Furthermore, phenology is subject to many conflicting

demands, for example an organism may receive an environ-

mental signal to reproduce but fail to do so because it lacks

critical resources (Obeso 2002). Inconsistencies and gaps in

data collection due to observation error are also common in

long-term studies, making quantification in many cases harder

still. Thus analytical approaches for tropical phenology need

to take account of the circularity of the data, be flexible, quan-

titative and attribute confidence to conclusions.

ANALYSES OF LONG-TERM TROPICAL PLANT PHENOLOGY

Published analyses of tropical plant phenology range from

simple descriptions and correlations with environmental vari-

ables to more recent, quantitative analyses of change

(Appendix S1, Supporting Information). The Newstrom,

Frankie & Baker (1994) framework was an important step

towards objective inter-site comparisons, however, categorisa-

tion loses analytical power and visual comparisons lack objec-

tive rigour. More computationally intensive methods have

included differentiation of species-level reproductive cycles

using finite mixture theory and bootstrapping methods (Can-

non et al. 2007), modelled autocorrelation functions (Norden

et al. 2007), sinusoid-based regression (Anderson et al. 2005),

spectral analysis (Chapman et al. 1999), circular statistics

(Wright & Calderon 1995; Wright et al. 1999; Zimmerman

et al. 2007; Ting, Hartley & Burns 2008), generalised linear

models (GLMs) (Newbery, Chuyong & Zimmermann 2013)

and generalised additive mixed models (GAMMs) (Polansky

& Robbins 2013). While data has often been collected at the

scale of the individual plant (9/18 studies in Appendix S1), this

is not always reflected in analysis where individuals are

clumped into species, guilds or a percentage score of a whole

community, losing power and precluding vital covariate infor-

mation. The longest tropical phenology data set analysed to

date is 22 years of flowering data (Pau et al. 2013) and

18 years of flowering and fruiting data (Wright & Calderon

2006) from Barro Colorado Island, Panama with many other

studies relying on fewer than 10 years data (9/18 studies in

Appendix S1).

Addressing the challenges of sample size, data quality, circu-

larity and pseudo-replication is of paramount importance to

quantify tropical phenology and compare between sites and

over time. Consensus as to the most suitable way to analyse

these data, what length of data is necessary to identify cycles

and how to attribute confidence to results has been missing,

although progress is beingmade (Hudson&Keatley 2010).

In this article, we apply statistical theory to both field and

simulated data, to develop and demonstrate objective methods

– based on Fourier analysis – to detect and quantify confidence

in regular phenological cycles. We also test the likelihood of

detecting cycles under different data noise and length scenarios

and discuss opportunities for incorporating the resulting

insights into research and policy. Explanations of technical

terms related to Fourier analysis used in this paper are given in

the glossary in Table 1 and their first use in the text is indicated

in bold italics.

INTRODUCTION TO FOURIER ANALYSIS FOR

PHENOLOGY

The Fourier transform is a mathematical method used to iden-

tify regular cycles in time-series data by comparing fluctuations

in the data with sinusoids (Bloomfield 2000) and has been used

extensively in disciplines such as engineering and mathematics.

The Fourier transform calculates the tendency (hereafter

known as power) of all possible cycles to appear in the data and

can therefore be used to quantify seasonal phenology data

without the need for prior knowledge or hypotheses of cycle

length. However, it has been rarely used in the context of phe-

nology analysis and never for long-term observational phenol-

ogy data. Chapman et al. (1999) used Fourier to identify

dominant reproductive cycles from 6 years of data for a tropi-

cal tree community, but did not use a confidence test. More

recently Zalamea et al. (2011) used Fourier to identify flower-

ing cycles from reconstructed 12-month series of herbarium

data for a genus of neotropical tree, attributing confidence to

cycles using a bootstrappingmethod.

Compared to other data for which Fourier has been used,

phenology data are often comparatively short and collected at

low resolution due to the costs and effort incurred. However,

in the field of movement ecology, Wittemyer et al. (2008) and

Polansky et al. (2010) successfully used Fourier to confidently

identify regular cycles in animalmovements by comparing out-

puts with a null hypothesis of random movement and 95%

confidence intervals.

In this paper, we build on Wittemyer et al.’s (2008) ana-

lytical framework to extend the existing uses of Fourier

for the field of long-term phenology research. First we

demonstrate appropriate application of Fourier to phenol-

ogy data by quantifying flowering cycle confidence, length,

power, timing and synchrony for individuals of a single

species from the Lop�e long-term observational study of

tropical forest plants (1986–2016). Second, we up-scale this

Fourier-based approach to analyse flowering phenology

using newly available data for all species from the Lop�e

study (856 individuals, 70 species). Third, we recognise that

while the Lop�e study is one of the longest and most con-

sistent of its kind in the tropics, data is still often noisy or

short for certain individuals and/or species. To apply this

framework elsewhere, and to inform best practice for data

collection, we test the ability of the Fourier method to
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detect regular phenology under different scenarios using

both simulated data and field data with realistic noise.

How to detect and describe flowering cycles
using Fourier analysis

THE LOP �E LONG-TERM OBSERVATIONAL PHENOLOGY

STUDY

Since 1986, researchers from the Station d’�Etudes des Gorilles

and Chimpanz�ees (SEGC), Lop�e National Park, Gabon, have

observed individual plants of 88 different species each month

and noted the proportion of each canopy covered by new,

mature and senescing leaves, flowers, unripe and ripe fruits.

Canopy coverage for a particular phenophase is assessed from

the ground using binoculars and recorded as a score from 0 to

4. The study area experiences an equatorial climate, where sea-

sonality is determined by movements of the inter-tropical con-

vergence zone to form two dry and two wet seasons annually.

See Tutin&White (1998) for detailed site description including

local climate and vegetation.

In this first section we demonstrate Fourier analysis using

flowering data for tree species Duboscia macrocarpa Bocq.

(Malvaceae, n = 11). Initial observation of species-level data

shows no apparent seasonality in flowering (Fig. 1a,b). How-

ever, this is because the true flowering cycle for this species is

18 months long and is not synchronised between individuals.

This unusual reproductive phenology is useful to demonstrate

the explicitly circular basis of Fourier analysis, and how analy-

sis at the individual-level allows for quantification of complex

Table 1. Glossary to technical terms

Term Definition

Bandwidth The distance at which two peaks in the periodogram can be distinguished from each other, a quantitativemeasure of

resolution. For example a bandwidth of 0�1means that cycles can be distinguished from each other when the

difference between their frequencies is at least 0�1
Circularmean Amean value calculated for circular datawhere the arithmeticmeanwould be inappropriate. For example the circular

mean of 5° and 355° is 0°, in comparison to the arithmeticmeanwhich is 180°
Circular standard deviation Ameasure of dispersion calculated for circular datawhere the arithmetic standard deviationwould be inappropriate

Circular data Data from circular distributions (e.g. months, hours, directions, etc.) where there is no true zero and ‘high’ and ‘low’

values are arbitrary (e.g. Fig. 1a)

Co-Fourier analysis SimultaneousFourier analysis of two timeseries. Additional outputs include relative phase difference between the

timeseries at every possible cycle (Fig. 1e)

Cycle Apattern of repeating events in a regular order

Cycle length/Wavelength The time taken for a whole cycle to repeat itself (e.g. number ofmonths between repeating flowering events)

Daniell kernel Amoving-average smoother used to eliminate fine detail from the raw spectral estimate tomake the outputmore stable

and easier to interpret (e.g. smoothed spectral estimate in Fig. 1c)

Dominant cycle The cycle length associatedwith the dominant peak.

Dominant peak The point in the spectral estimatewith highest power

Fourier analysis Decomposition of a timeseries into a series of sinusoidal functions. The power of each cycle in the series can be used to

identify dominant cycles (Fig. 1c)

Frequency The rate at which something occurs (e.g. number of flowering cycles permonth or per year)

Null continuum A spectral estimate, derived from the data series, that has been smoothed extensively so that only the underlying shape

remains, and no fine detail can be identified (Fig. 1d)

Periodogram The visual output of the spectral estimate derived fromFourier analysis (Fig. 1c,d)

Phase difference The distance between the peaks in two cycles ofmatching frequency and referenced in time (Fig. 1e)

Power The relative tendency of all possible cycles to appear in the data. Estimated in the spectral estimate and plotted in the

y-axis of a periodogram (Fig. 1c). Cycles not well supported by the data have low power, whereas cycles well

supported by the data have high power

Radians The standard unit of angularmeasures; 2p radians = 360°
Raw spectral estimate The default output ofFourier analysiswhere all fine-scale structure is included, and can be overly influenced by certain

segments of the data

Resolution The ability to represent fine structure and distinguish between close peaks in the spectral estimate derived fromFourier,

quantified as the bandwidth (Bloomfield 2000). Spectral estimates with high resolutionwill show all peaks including

minor ones, where as spectral estimates with very low resolutionmay show no peaks at all, but rather the general

shape of the data (e.g. the null continuum in Fig. 1d). Increased resolution reduces stability and vice versa

Sinusoid/Sine wave/

Cosine wave

A smooth repeating pattern occurring every 2p radians (or 360°) (e.g. the simulated curve in Fig. 1e)

Smoothed spectral

estimate

The output ofFourier analysis after amoving-average smoother is applied to the raw spectral estimate (Fig. 1c,d)

Spans The user-specifiedwidths of theDaniell kernel smoother, specifically howmany data points are used to smooth the

spectral estimate in each local window

Spectral estimate/

Spectrum

The output ofFourier analysis showing the tendency of all possible cycles to appear in the data, from twice the

observation interval to the full length of the series (Fig. 1c,d)

Stability Extent to which small fluctuations in certain segments of the data influence the spectral estimate derived fromFourier.

Greater stability reduces resolution and vice versa (Bloomfield 2000)

Synchrony The simultaneous occurrence of two ormore events

Timeseries A sequence of data points arranged in time order
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tropical phenology. R scripts are provided in Appendix S6 and

follow this description.

DATA INPUT REQUIREMENTS

For all Fourier analyses, we used the function spectrum from

the R base package ‘stats’ (R Core Team 2015). The method

requires regular time intervals between observations, so we

interpolated data for gaps up to three data points long using a

simple linear estimator, interpNA from R package ‘timeSeries’

(Rmetrics Core Team et al. 2015). For longer gaps we suggest

analysing timeseries in separate parts but more sophisticated

forms of interpolation could be used or Lamb normalised

periodogram analysis (Press et al. 1992) which allows for

unevenly spaced data.

THE PERIODOGRAM

The Fourier transform decomposes a timeseries into a series of

sine and cosine waves of differing frequencies, quantifying the

power of each via the spectral estimate, visualised in the peri-

odogram (Fig. 1c). The shortest possible cycle for our data is

2 months long (twice the observation interval) and the longest

is the full length of the data available. Cycles not well sup-

ported by the data have low power, whereas cycles well sup-

ported by the data have high power.

(c)

(a) (b) 

(d) 

(e) 

Fig. 1. Using Fourier analysis to detect flow-

ering phenology for a single species Duboscia

macrocarpa. (a) Boxplots showing the propor-

tion of individuals (n = 11) in flower each

month from 1986 to 2016. There is no obvious

seasonal flowering pattern for this species. (b)

Time-series plots showing flowering canopy

scores every month since 1986–2016 (five indi-
viduals shown as an example). There appears

to be some regular flowering cycles for individ-

uals. (c) Periodogram displaying the smoothed

spectral estimates (bandwidth = 0�1) derived

from Fourier analysis for each individual flow-

ering timeseries in (b). The x-axis shows all

possible cycle frequencies (from one cycle

every 2 months to the full length of the series).

The y-axis shows the power of each cycle. The

highest peak in each spectrum occurs at a fre-

quency of 0�056 cycles per month (indicating a

flowering cycle length of 18 months). (d) Peri-

odogram displaying smoothed spectral esti-

mate derived from Fourier analysis for the

first flowering timeseries shown in (b) (red

line). The 95% confidence intervals for the

spectral estimate (red shades) show that the

dominant peak (grey arrow) at 0�056 cycles per
month is different from the null hypothesis of

no cyclicity (the null continuum: black dashed

line). We can be confident that the 18-month

cycle is different from surrounding noise and

represents a real flowering cycle. (e) Demon-

stration of co-Fourier analysis to derive the rel-

ative phase of the flowering cycle identified in

(d). The flowering timeseries (red line) is

decomposed alongside a regular cosine curve,

simulated to have the same cycle length as the

flowering data (18 months) and by convention

for our data peaking on the 1 January 1986

(grey line). The phase difference (2�11 radians)

between the two timeseries can be converted

to time (6 months).
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SMOOTHING THE SPECTRAL ESTIMATE

The raw (unsmoothed) spectral estimate shows all fine-scale

structure and can be overly influenced by certain segments of

data.We smooth all spectral estimates using amoving-average

smoother – the modifiedDaniell kernel – available within func-
tion spectrum. The width of the Daniell kernel (known as the

span) is user-specified and is a compromise between resolution

and stability. The classic text on this method (Bloomfield 2000)

recommends a trial and error approach for span-choice relying

on visual observation of the periodogram. After much experi-

mentation we found that successively applying the Daniell ker-

nel to achieve a smoothed spectral estimate with a bandwidth

close to 0�1 gave sufficient resolution to identify dominant peaks

in the periodogram. For example applying a Daniell kernel

with a span of seven, followed by a kernel with a span of nine

to the first D. macrocarpa flowering timeseries of length

353 months (Fig. 1b) resulted in a spectral estimate with band-

width 0�099. Spans to achieve this resolution vary depending

on initial time-series length; we provide appropriate spans for

data ranging from 24 to 360 months inAppendix S6 (line 160).

Smoothed spectral estimates derived from Fourier analysis of

flowering data for five example D. macrocarpa individuals are

shown in Fig. 1c.

IDENTIFYING DOMINANT CYCLES

Interpreting the periodogram begins with observing the gen-

eral shape of the spectrum (e.g. is the data influenced by short

or long cycles) and then to identify the peaks with highest

power, representing dominant cycles within the data. The

smoothed spectral estimates derived from flowering data for

D. macrocarpa show a similar pattern between individuals

(Fig. 1c). The highest peak for each individual is near to 0�056
cycles permonth (equivalent to a cycle length of 18 months).

ASSIGNING CONFIDENCE TO DOMINANT CYCLES

Tree phenology studies often rely onmonthly canopy observa-

tions and are subject to both measurement error (observation

uncertainty) and natural variation (process uncertainty).

Because of these uncertainties a measure of confidence is

needed to differentiate real cycles from the surrounding noise.

Bloomfield (2000) suggests that spectral estimates approximate

a chi-square distribution, and that 95% confidence intervals

can be derived as follows,

vŝðfÞ
v2vð0 � 975Þ

� sðfÞ� vŝðfÞ
v2vð0 � 025Þ

eqn 1

where v is the degrees of freedom (derived from the function

output), ŝðfÞ is the spectral estimate, s(f) is the true spectrum

and v2v(0�975, 0�025) are the 2�5% and 97�5% quantiles of the

chi-square distributionwith v degrees of freedom.

There are two credible null hypotheses – representing ‘no

cyclicity’ – with which to compare the 95% confidence inter-

vals. The first is the null continuum of the spectrum, which is an

extreme smooth of the spectral estimate such that only the

underlying shape remains (dotted line, Fig. 1d). The second is

simply themean spectrum (otherwise known as the white noise

spectrum;Meko 2015).We prefer the null continuum as its use

results in fewer false positive results at medium to high noise

scenarios (Appendix S2).

We found we could achieve sufficient smoothness for the

null continuum by successively applying the Daniell kernel

to give a bandwidth similar to 1 (Appendix S1 line 160).

Where the lower confidence interval for a specified fre-

quency does not overlap with the null continuum, the peak

at that frequency can objectively be considered as signifi-

cantly different from the surrounding noise and representing

a real cycle. Bloomfield (2000) cautions against general fish-

ing expeditions for significant peaks because the 95% confi-

dence intervals calculated are not simultaneous. We

therefore, only recommend using this method to test the

dominant peak, not all local peaks. Occasionally we find

that when data are highly irregular, the dominant peak is

identified at the longest possible cycle length and is likely to

score as ‘significant’ against the null continuum. To avoid

these false positive results, we screen Fourier outputs and

exclude dominant cycles greater than half the data length.

95% confidence intervals for the smoothed spectral estimate

derived from one exampleD. macrocarpa timeseries are shown

in Fig. 1d. We can be confident that the dominant peak at

18 months represents a real flowering cycle because the lower

confidence interval does not cross the null continuum.

ASSESSING TIMING AND SYNCHRONY

To assess timing and synchrony within populations, we

developed a method to reference the peak events of tropical

phenological cycles in time using a simulated cosine curve

within co-Fourier analysis. Co-Fourier allows simultaneous

Fourier analysis of any two timeseries and in addition to nor-

mal outputs, gives an estimate for the lag (phase difference)

between the timeseries for every possible cycle. Once a domi-

nant cycle has been detected in an empirical timeseries, we sim-

ulate a cosine curve with matching cycle length, by convention

for our data peaking on 1 January 1986. After co-Fourier anal-

ysis of the empirical timeseries alongside the matching simu-

lated timeseries, we then extract the phase difference associated

with the dominant cycle.

In Fig. 1e we show flowering data for an exampleD. macro-

carpa individual alongside a simulated cosine curve with

matching cycle length (18 months) and peaking on 1 January

1986. The phase difference between these two timeseries at the

dominant cycle of 18 months is 2�11 radians.
Phase difference can be converted to time (an estimate of

the first flowering peak, in months since 1 January) by the

following,

if Uradians [ 0; Umonths ¼ Uradians

ð2p=kÞ
if Uradians\0; Umonths ¼ Uradians þ 2p

ð2p=kÞ eqn 2

whereΦ is the phase difference and k iswavelength inmonths.

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution, 8, 530–540
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It is important to consider that radians are a circular unit

and there are 2Π radians in a full cycle no matter how many

months are in that cycle. Converting phase to months is very

simple when the cycle is annual: 1 month = 2Π/12 and the first
peak month will be the only peak month in a given calendar

year. However, for cycle lengths other than 12 months, con-

version to time will need some careful thought. For a 6-month

cycle, we would expect two peaks in each calendar year, and

for an 18-month cycle we would expect one peak a calendar

year but in differentmonths in alternate years.

For the D. macrocarpa timeseries used as an example in

Fig. 1e, the phase difference of 2�11 radians converts to

6 months since 1 January, placing the first peak at the begin-

ning of July. The next peak in flowering will occur 18 months

later, at the beginning of January. We would expect this indi-

vidual to have flowers in January and July in alternate years.

CALCULATING MEAN TIMING AND SYNCHRONY FOR

SPECIES

Mean phenophase timing can be computed for a sample with

the same dominant cycle by taking the circular mean of the

phase difference (in radians) for each individual, as calculated

from co-Fourier analysis. Synchrony can be quantified by tak-

ing the circular standard deviation of the mean phase [all circu-

lar values calculated using the R package ‘circular’ (Agostinelli

& Lund 2013)]. For the D. macrocarpa example, mean phase

difference for all individuals with significant dominant cycle at

18 months is 0�94 � 1�68 SD radians. Converted to time, this

references a flowering peak in mid-March and mid-September

in alternate years. However, synchrony between individuals is

so low (SD of peakmonth is 4�8 months) that ‘peak flowering’

for the population has little biological meaning.

In Appendix S4 we include a detailed description of Fourier

analysis for the flowering cycles of two additional species (Anti-

desma vogelianum Muell. Arg. flowering on a 6-month cycle,

and Pentadesma butyracea Sabine flowering on an annual

cycle) and a comparison of Fourier alongside four other com-

monly used methods for seasonal phenology analysis – graphi-
cal representations, circular statistics, autocorrelation analysis

andGAMs.

Scaling up –quantifying flowering phenology
amongmany individuals and species

METHODS

We used the methods developed above to quantitatively

describe flowering data for all species monitored as part

of the Lop�e study. We preselected 856 individuals (70

species of 26 families) with the following criteria; greater

than 5 years continuous data, at least one flowering event

and no persistent records of disease (species list given in

Appendix S3). Where we found isolated gaps longer than

3 months, we excluded data before or after (whichever

was shorter) from further analysis. Linear interpolation

for gaps shorter than 3 months was necessary for 95% of

the individuals in the sample. Time series’ length ranged

from 60 to 353 months (mean = 249 months).

To quantitatively describe regular cycles, we ran Fourier

analysis and a confidence test of the dominant flowering cycle

for each tree. To allow comparison between individuals for the

power of the dominant cycle, we normalised the spectrum so

that the mean power across frequencies was equal to one

(Polansky et al. 2010).

To summarise at the species-level we calculated the

modal cycle length for species with more than five indi-

viduals with significant dominant cycles. To estimate the

level of synchrony at the species-level, we ran co-Fourier

analysis for each individual with a significant dominant

cycle equal to the modal cycle length for that species

(only including species with more than five such individu-

als). From the co-Fourier outputs we calculated the stan-

dard deviation of mean phase difference in radians and

converted to months using eqn 2 for each species.

We present whole sample summaries for time-series

length and sample size per species and compare these

between all individuals and those for which we could

detect significant cycles. We then present the most com-

mon flowering cycles and level of synchrony (standard

deviation of mean phase difference) per species. We also

tested the impact of time-series length as a predictor of

detecting significant regular phenology using a binomial

generalised linear mixed model (GLMM) with species as

a random effect.

RESULTS

We detected significant regular flowering cycles for 509 out of

856 individuals in our sample, 79% of which were annual. Of

those for which we could not confidently detect regular cycles,

22 came from five species for which no significant cycles were

detected (e.g. Baillonella toxisperma Pierre and Dacryodes

normandii nornandii Aubr. &Pell.,Appendix S3: Table 2).

When only trees with significant cycles were included, the

sample distribution shifted towards longer timeseries (Fig. 2a),

and mean sample size per species for all trees (12 individuals

�8�1 SD) was reduced (seven individuals �5�8 SD) (Fig. 2b).

We found time series’ length to be a significant positive predic-

tor (Z value = 6�42, P < 0�001) of the likelihood of detecting a

significant regular cycle from the data (GLM outputs in

Appendix S5).

To assess modal cycle length we used a subsample of 42 spe-

cies (458 individuals). The modal flowering cycle for most spe-

cies was annual (37 species, e.g. P. butyracea, Appendix S4),

with others flowering on a 6-month (4 species, e.g. A. vogelia-

num, Appendix S4) and an 18-month basis (1 species, D.

macrocarpa, Appendix S4) (Figs 2c and 3; Appendix S3:

Table 2).

To assess level of synchrony between species we used a sub-

sample of 39 species (402 individuals). The majority of species

had flowering cycles well synchronised between individuals (35

species with standard deviation of mean peak <1 month)

(Fig. 2d; Appendix S3: Table 2).
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Species showed considerable inter and intraspecific vari-

ation in flowering phenology (Fig. 3). Some species were

split between different cycle length strategies; e.g. for a

sample of 19 Uapaca guieensis Muell. Arg. trees, the dom-

inant flowering cycle was annual for 13 trees and

6 months for six trees. Species also varied in the power

of their dominant flowering cycles. Despite all individuals

shown in Fig. 3 having significant flowering cycles, some

species such as Maranthes glabra (Oliv.) Prance (mean

power = 9�3 � 1�6 SD) and Xylopia aethiopica (Dunal) A.

Richard (mean power = 8�1 � 2�6 SD) tended to have

much stronger, less noisy cycles than others such as

Klainedoxa gabonensis Baill. (mean power = 2�1 � 0�4 SD)

and Pseudospondias microcarpa (A Rich.) Engl. (mean

power = 2�4 � 0�7 SD) (Appendix S3: Table 2).

Testing Fourier under different scenarios using
both simulated and field data

METHODS

To test the impact of noise and sample length on cycle

detectability, we undertook a power analysis of simulated phe-

nology data. We simulated 10 000 individual timeseries repre-

senting an annually repeating flowering cycle peaking in June,

with three key parameters allowed to vary between ‘individu-

als’; (i) the regularity of the peak month (representing process

uncertainty), (ii) the detectability of flowering events (repre-

senting observation uncertainty) and (iii) the length of data

recorded. For each year of data, we generated monthly flower-

ing scores of zero and a peak of 3-month durationwith positive

scores randomly chosen from a distribution similar to that

found in our field data. We varied levels of regularity by ran-

domly choosing the peak flowering month each year from a

truncated normal distribution (ranging from 2 to 11, with

mean six and standard deviation randomly selected from 0�1 to
6). The standard deviation of the distribution was consistent

between years but allowed to vary between individuals. We

then varied levels of detectability by replacing a certain per-

centage of randomly chosen positive flowering scores with

zeros (from zero to 60%). Finally, a window of data (5, 10 or

15 years) was randomly cut from each full-length timeseries

prior to Fourier analysis (simulated data are plotted in

Appendix S2 as an example). We assessed the dominant cycle

using a 95% confidence test and whether it fell within the

expected interval for an annual cycle (11–13 months).

To demonstrate the impact of data lengthwith realistic noise

we also conducted a power analysis using all individual time-

series from the Lop�e study longer than 20 years, from which

we had previously detected significant annual flowering cycles

and for species with more than five such individuals (233 indi-

viduals of 30 different species). We randomly chose individual

timeseries from this sub-sample and cut shorter windows of

data (window length randomly selected from the range

2 : 20 years with randomly selected start date), repeating

10 000 times.We analysed thewindowed timeseries with Four-

ier as described above and recorded if the dominant cycle was

significant and fell within the expected interval for an annual

cycle (11–13 months). We fitted binomial GLMs to compare

the effect of time series’ length between species.

RESULTS

The power analysis of simulated phenology data (Fig. 4)

showed that as time series’ length increased, from5 to 15 years,

so did likelihood of confidently detecting the annual cycle. For

example for a mid-level noise scenario (cycle regularity 2 SD;

zero replacement 20%) the proportion of the sample with a sig-

nificant annual cycle was zero after 5 years, 57%after 10 years

and 81% after 15 years. However, at relatively low-noise sce-

narios, (highly regular cycles <1 SD; low zero replacement

<20%), the effect of time-series length saturated quickly, with

100% likelihood of detecting a significant annual cycle after
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Fig. 2. Summary of flowering phenology for all tree species monitored

at Lop�e NP, Gabon. (a) Density plot of time series’ length for all indi-

viduals analysed (red, 856 individuals) compared to individuals with

significant flowering cycles (blue, 509 individuals). (b) Density plot of

number of individuals per species for all individuals (red, 856 individu-

als, 70 species) compared to individuals with significant flowering cycles

(blue, 509 individuals, 65 species). (c) Density plot of most common

flowering cycle length (mode) per species, for a subsample of 42 species,

each more than five individuals with significant flowering cycles (458

individuals). (d) Density plot of synchrony (standard deviation of mean

peak month) per species, for a subsample of 39 species, each with more

than five individuals with significant dominant cycle equal to the species

modal cycle length (402 individuals).
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just 5 years. In contrast at high noise scenarios (highly irregu-

lar cycles >4 SD; zero replacement >60%), likelihood of

detecting a significant annual cycle never rose above 20% even

after 15 years. For highly regular cycles (SD < 2), even poor

event detectability (zero replacement 40–60%) had little

impact on likelihood of detecting the cycle.

Similar to the simulated data, we found that as time series’

length increased, so did likelihood of detecting regular cyclic

behaviour for our field data (Fig. 5). We found that for the

species in our sample with the most positive slope estimates for

time-series length [M. glabra and Pycnanthus angolensis

(Welw.) Warb., Appendix S5], just 6 and 7 years of data,

respectively, were required before the annual flowering cycle

could be detected with greater than 95% likelihood. However,

species ranged widely, with 19 species not reaching this 95%

threshold until after 20 years. The species with the least posi-

tive slope estimates were Detarium macrocarpum Harms and

Greenwaydodendron suaveolens Engl. &Diels. (Appendix S5).

Discussion

DETECTABIL ITY AND POWER

The flowering phenology of trees observed at Lop�e National

Park, Gabon, is dominated by annual cycles (88% species), in

contrast with forests from the neotropics that appear to be

dominated by sub-annual reproductive cycles and the

Dipterocarp forests of South-East Asia that are dominated by

supra-annual reproductive cycles (Sakai 2001). We could not

confidently describe regular cycles for many individuals in our

sample (41%), where either flowering is regular but the data

were too noisy or too short for detection or flowering is irregu-

lar. Observation length was shown to be a significant positive

predictor of detecting regular cycles in both field data and sim-

ulations. Even when cycles were confidently described, we

found that the power attributed to cycles ranged widely, mean-

ing that the flowering phenology of some species is much

Sub-annual Annual Supra-annual
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Pseudospondias microcarpa

Detarium macrocarpum
Uvariastrum pierreanum
Trichoscypha acuminata

Irvingia grandifolia
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Pentaclethra macrophylla
Diospyros dendo

Diospyros zenkeri
Celtis tessmannii

Aucoumea klaineana
Xylopia quintasii

Irvingia gabonensis
Diospyros polystemon

Santiria trimera
Uapaca guineensis

Diospyros mannii
Staudtia kamerunensis

Dialium lopense
Psychotria vogeliana

Canarium schweinfurthii
Scyphocephalium ochocoa

Psidium guineense
Monanthotaxis congoensis

Heisteria parvifolia
Greenwayodendron suaveolens

Vitex doniana
Tetrapleura tetraptera

Sacoglottis gabonensis
Parkia bicolor

Dacryodes buettneri
Cola lizae

Antidesma vogelianum
Porterandia cladantha

Cissus dinklagei
Duboscia macrocarpa

Ongokea gore
Pentadesma butyracea
Pycnanthus angolensis

Xylopia aethiopica
Maranthes glabra

0 5 10 0 5 10 0 5 10

Power of the dominant flowering cycle

Fig. 3. Inter and intraspecific variation in

flowering phenology for tree species moni-

tored at Lop�e NP, Gabon. Cycle length (sub-

annual, annual and supra-annual) and power

for each individual (grey dots) andmodal cycle

length and mean power per species (red dots)

from a sub-sample of 42 species with more

than five individuals with significant flowering

cycles (458 individuals).
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noisier than others. However, the source of this noise is difficult

to differentiate for field data. To explore this further we simu-

lated two forms of noise associated with both process and

observation uncertainty and found that cycle regularity has a

greater effect on ability to detect a significant cycle than event

detectability: Fourier analysis can be used to detect the cycle

even if the observer misidentifies 60% of flowering months.

There are likely to be additional sources of noise in the field,

such as false recording of non-existent phenophases, however,

we consider these to occur less often.

We attributed cycle characteristics to species when we had

five or more individuals with significant cycles, under the

biological assumption that phenology is an evolutionarily

adaptive trait and likely to be constraining con-specifics in a

similar way. However, true levels of intraspecific variation are

unknown. We find considerable intraspecific variation for

some species (i.e. Uapaca guineensis) and further research may

reveal that phenology is not necessarily a stable trait within a

species or an individual’s lifetime.

Our results can be used to inform effective collection, pro-

cessing and analysis of phenological data. We have shown that

where suitable data is available, objective analyses can be used

to confidently detect regular phenology and that frequency-

based outputs – cycle length, power, timing and level of syn-

chrony – give a suite of indicators that could be used to quanti-
tatively describe and compare phenology globally.

DEVELOPMENT FOR CAUSATION AND CHANGE

RESEARCH

The indicators derived from Fourier analysis can be used to

address research questions such as the proximate and ultimate

causes of adaptive phenology and detection of change. Where

data is available, analysis at the individual-level allows for

inclusion of covariates (e.g. location, age, size of individuals,

etc.) in subsequent statistical models, either in combination

with random effects and best linear unbiased predictors to

account for variation (e.g. between different sites, genera or

functional groups) or as fixed effects to test hypotheses of the

causes of variation between individuals’ phenology. Co-Four-

ier analysis would allow testing of other cyclic factors (such as

climate data) alongside phenology to measure synchrony. The

advantage of these spectral approaches is that they explicitly

model the circular nature of phenology and weather data with-

out losing power by clumping data points into arbitrary time

periods or pseudo-replication.

Detecting long-term changes in phenology is challenging

and field observations (Plumptre 2011) are vital to stimulate

hypotheses and further analysis. However, it will be

increasingly important to measure the statistical confidence of
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Fig. 4. Power analysis of simulated phenology data (n = 10 000) to

show the impact of data noise and length (5, 10 and 15 years; (a)–(c))
on likelihood of detecting cycles using Fourier analysis. Noise simu-

lated as cycle regularity (y-axis: standard deviation – 0�1 : 6 – of mean

month of annual flowering event) and event detectability (x-axis: pro-

portion – 0 : 60% – of positive flowering events replaced by zeros).
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detected changes. To date, studies of change in tropical phenol-

ogy are few (Appendix S1), due to the paucity of long-term

data. Wavelet analysis is the natural extension of Fourier into

the time-frequency domain (Wittemyer et al. 2008; Hudson,

Kang & Keatley 2010; Polansky et al. 2010), overcoming

assumptions of stationarity, to estimate the spectrum as a func-

tion of time (Cazelles et al. 2008). For phenology research, this

could enable analysis of whether individuals or species repro-

duce more or less frequently (e.g. change in dominant cycle

length), reproduce at the same frequency but with more or less

certainty (e.g. change in the power of the dominant cycle) or

shift phase and become more or less synchronised over time.

The power of a cycle may be amore subtle and effective indica-

tor for change than frequency to track increasing uncertainty

over time, especially in the shorter term.

In a formal comparison of this Fourier-based method with

other commonly used methods for quantifying phenology

(Appendix S4), we found Fourier is flexible to diverse phenol-

ogy and provides a suite of quantitative information to

describe seasonal activity with attribution of variance and con-

fidence.

STEPS FORWARD

We have shown that at least 6 years of data are necessary to

confidently detect reproductive cycles amongst our species

sample. For data collection scenarios resulting in noisier data –
those with high likelihood of measurement error (e.g. incon-

spicuous flowers), systematic error (e.g. high inter-observer

uncertainty) or natural variation that cannot be controlled for

(e.g. diverse array of phenological responses within a popula-

tion) – it will be necessary to invest in large samples of individu-

als over a longer time period to detect cycles confidently. To

effectively monitor the response of tropical forests to global

change, it will be necessary to focus efforts on suitable indica-

tor species – those with good signal to noise ratios – to max-

imise analytical power over relatively short time periods.

Formany phenology research questions, collecting sufficient

data will be a challenge and require significant research effort.

Ways to achieve this include: formation of research networks

and greater coordination of methods and objectives between

sites, Internet-based citizen-science data collection networks

and technical solutions to data collection, such as automated

canopy photography andGIS.

Conclusions

Phenology is a key adaptive trait shown to determine species

distributions (Chuine 2010) and as such will shape how ecosys-

tems respond to rapidly increasing regional and global changes

including human pressure. With the emergence of long-term

tropical phenology data, the need also emerges for appropriate

analytical methods to improve our understanding of the func-

tioning of ecosystems. We present a Fourier-based method

that can be further developed and tested, to give simple, flexible

and quantifiable indicators for phenology activity, and demon-

strate the importance of consistent long-term investment in

phenological research.
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Appendix S1.Review of methods from the literature. Review of key lit-

erature analysing long-term tropical plant phenology data, detailing

the phenophase of interest, site, data length, analytical methods used

and the scale of data collection and analysis.

Appendix S2. Null hypothesis choice and example simulated data.

Power analysis of simulated data to show the impact of null hypothesis

choice (null continuum vs. white noise spectrum) for detecting

periodicity.

Appendix S3. Species list fromLop�e long-term phenology study. List of

families (n = 26), species (n = 70) and individuals (n = 856) observed

as part of the Lop�e long-term phenology study included in Fourier

analysis and summarised Fourier outputs at the species level.

Appendix S4.Demonstration of Fourier analysis and comparison with

other methods. Demonstration of Fourier analysis for three case study

species – Antidesma vogelianum, Pentadesma butyracea, Duboscia

macrocarpa – and comparison with other commonmethods for quanti-

fying flowering phenology.

Appendix S5. GLM outputs. GLM outputs for effect of time-series

length on likelihood of detecting significant cycle from all available field

data and from power analysis of annually cycling species.

Appendix S6.Rcode for Fourier analysis of phenology.
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